
Chris Piech Handout #43 
CS109 June 1st, 2016 

Practice Final Examination Solutions 
 

1.   Answer: 24/51 = 8/17.  There are multiple ways to obtain this answer; here are two: 
 
The first (common) method is to sum over all possibilities for the rank of the first card 
drawn multiplied by the probability that the second card has greater rank, given the rank 
of the first card.  The first card drawn can be of any of the 13 ranks with equal probability 
(= 1/13).  Let i be the rank of the first card.  After the first card is chosen, 51 cards 
remain, of which 4(13 – i) have a rank greater than i. 
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The second method is to solve this problem using symmetry.  After the first card is 
drawn, there are 51 cards remaining.  Of those 51 cards there are 48 (= 51 – 3) that have a 
rank different rank than the first card drawn.  For a randomly chosen rank for the first 
card, by symmetry, half of the remaining cards (24 = 48/2) will have a rank higher than 
the first card, giving us 24/51. 
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2.    
a.   In order to sell the share of HCI exactly 4 days after buying it, it means that the first 

two days after buying it must have included one day of increasing price (denote that 
as U) and one day of decreasing price (denoted that by D), then followed by two 
consecutive days of increasing or decreasing price.  Thus the possible outcomes are: 
 
P(Sell on day 4)  = P(UDUU) + P(DUUU) + P(UDDD) + P(DUDD) 
   = 2332 )1()1()1()1()1( pppppppppp −−+−+−+−  
   = ))1()(1(2 22 pppp −+−  
 

b.   There are two common ways to compute this.  The first is to define a recurrence 
relation.  Namely, the probability you eventually sell for a gain is the probability that 
you either have two U days in a row, or that you have a U day and a D day (so the 
stock is again at the starting price of $10), multiplied by the probability that you 
eventually sell for a gain.  Formally, this can be written as: 
 
P(sell for $12) = P(UU) + P(sell for $12 and UD) + P(sell for $12 and DU) 
   = p2 + P(sell for $12)P(UD) + P(sell for $12)P(DU) 
   = p2 + P(sell for $12)p(1 – p) + P(sell for $12)(1 – p)p 
   = p2 + 2P(sell for $12)p(1 – p) 
 
Let X = P(sell for $12), and solve for X yielding: 
 
X = 2Xp(1 – p) + p2   
1 = 2p(1 – p) + p2/X 
p2/X = 1 – 2p(1 – p) 
X = p2/(1 – 2p(1 – p)) 
X = p2/(p2+ (1 – p)2) 
 

So, P(sell for $12) = 
22
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A second (simpler) way to compute this is using the odds that when we sell, we are 
selling for a gain. Here we essentially ignore (cancel out) pairs composed of a U and 
a D before the sale, and simply focus on whether the two days that determine the sale 
are Us or Ds. Formally, we have the following (which immediately gives us the 
answer): 

P(sell for $12) = P(2 Us)/(P(2 Us) + P(2 Ds)) = 
22
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3.    

Let A = number of type W machines on "watch list" 
Let B = number of type X machines on "watch list" 
 
Note that A ~ Bin(10, 0.2) and B ~ Bin(10, 0.2). 
Thus, we have: E[A] = 10(0.2) = 2 and E[B] = 10(0.2) = 2 
 
a.   Since A and Wi are independent and B and Xi are independent: 

 
E[Y]  = E[A]E[Wi] + E[B]E[Xj]  

 

= (2)(4) + (2)(5) = 8 + 10 = 18 
 
 

b.   We can define random variable C = Wa + Wb + Wc.  Noting that all Wi are 
independent, we have that: C ~ (Poi(4) + Poi(4) + Poi(4)) = Poi(12) 
 

Here, Y = C, so we have: 
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c.   We can define random variable D = Xa + Xb + Xc.  Noting that all Xi are independent, 
we have that: D ~ N(5, 3) + N(5, 3) + N(5, 3) = N(15, 9)  

 
Since the Xj are Normally distributed to begin with, they are continuous variables and 
so is their sum. So, in computing a probability involving the sum, there is no need to 
approximate a discrete quantity using a continuity correction.  Here, Y = D, so we 
have: 
 

)67.1(1)
9
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= 1 – φ(1.67) ≈ 1 – 0.9525 = 0.0475 
 
 
Here is what you would have gotten if you had used the continuity correction (which 
in this particular case, we gave full credit for when grading the problem): 
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= 1 – φ(1.5) ≈ 1 – 0.9332 = 0.0668 
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4.    
Let indicator variable Xi = 1 if the i-th integer generated is a 1, and 0 otherwise. 
Let indicator variable Yj = 1 if the j-th integer generated is a 5, and 0 otherwise. 
 

Note that X = ∑
=

n

i
iX

1

 and likewise Y = ∑
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a.   Note: E[Xi] = P(Xi) =1/5 and likewise E[Yj] = P(Yi)= 1/5. 
 

Also note: E[Xi, Yj] = 0 whenever i = j, since a 1 and 5 cannot both be the i-th integer. 
 

Cov(Xi, Yj) = E[Xi Yj] – E[Xi] E[Yj] 
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So, Cov(X, Y) =
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b.    

By definition: ρ(X, Y) = 
)(Var)(Var

),(Cov
YX

YX  

 
We note that Xi ~ Ber(p = 1/5) and likewise Yj ~ Ber(p = 1/5) 
 
Thus, Var(Xi) = Var(Yj) = p(1 – p) = (1/5)(4/5) = 4/25 
 

Since X = ∑
=

n

i
iX

1

 and all the Xi are independent: Var(X) = nVar(Xi) = 4n/25 

 
Also, Var(Y) = Var(X) = 4n/25 
 

So, ρ(X, Y) = 
4
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5.   Let n = the number of machines we purchase.  Let Yi = the total number of weeks we use 

that the i-th machine purchased until it dies.  Note that: ∑
=

=
n

i
iYX

1

 

We want to compute an expression for n, such that: 
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Now, we apply the Central Limit Theorem: 
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Noting that )()(-1 CC −Φ=Φ , we obtain: 
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Here we want to determine the minimal value of n satisfying the inequality above.  

Clearly, n = 20 is too small, since 0
20
400)20(20

=
− .  We consider n = 21, giving us: 
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21 machines is sufficient to give us P(X > 2000) ≥ 0.95. 
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6.   Let X = value returned by Near(). 

 
E[X]  = 1/4(2 + 4 + E[6 + X] + E[8 + X]) = 1/4(2 + 4 + 6 + E[X] + 8 + E[X]) 

= 1/4(20 + 2E[X]) = 5 + 1/2E[X]  
 

So, E[X] = 10 
 
E[X2]  = 1/4(22 + 42 + E[(6 + X)2] + E[(8 + X)2] 
  = 1/4(4 + 16 + 36 + 12E[X] + E[X2] + 64 + 16E[X] + E[X2]) 
  = 1/4(120 + 28E[X] + 2E[X2]) 
  = 1/4(120 + 28(10) + 2E[X2]) = 1/4(400 + 2E[X2]) = 100 + 1/2E[X2] 
 

So, E[X2]  = 2(100) = 200 
 
 
 
a.    

E[Y]  = 1/3(2 + E[2 + X] + E[4 + Y]) = 1/3(2 + 2 + E[X] + 4 + E[Y]) 
 = 1/3(8 + E[X] + E[Y]) = 1/3(8 + 10 + E[Y]) = 18/3 + 1/3E[Y] 
 

So, E[Y] = 9 
 
 
 
b.    

E[Y2] = 1/3(22  + E[(2 + X)2]+ E[(4 + Y)2] 
 = 1/3(4 + 4 + 4E[X] + E[X2] + 16 + 8E[Y] + E[Y2]) 
 = 1/3(24 + 40 + E[X2] + 8(9) + E[Y2]) 
 = 1/3(136 + 200 + E[Y2]) 
 = 1/3(336 + E[Y2]) 

 

So, E[Y2] = 336/2 = 168 
 

Var(Y) = E[Y2] – E[Y]2 = 168 – (9)2 = 168 – 81 = 87 
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7.    

a.    
P(X = 1) = 0 
 
P(X = 2) = 1/4 = 16/64 
 
P(X = 3) = (3/4)(2/4) = 3/8 = 6/16 = 24/64 
 
P(X = 4) = (3/4)(2/4)(3/4) = 9/32 = 18/64 
 
P(X = 5) = (3/4)(2/4)(1/4) = 3/32 = 6/64 

 
 
 

b.   E[X] = ∑
=

=
5

1

)( 
i

iXPi  = 1(0) + 2(16/64) + 3(24/64) + 4(18/64) + 5(6/64) 

   = 238/64 = 103/32 
 
 
 

c.   In the general case: 
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without any collisions, and then get a collision on the last (i-th) string hashed. 
 
Note that the product above could be written with either an n or n – 1 as the top index.  
Either form is equivalent, since the form with n as the top index just does an extra 
multiplication of the product by 1 (= n/n). 
 

  
 Using the definition of expectation, we have: 
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8.    

a.   The mass function for the Geometric distribution with given parameter p is 
1)1()|( −−= iX

i pppXf , where Xi ≥ 0.   
 
The likelihood function to maximize is: 
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So, the log-likelihood function to maximize is: 
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Taking the derivative of LL(p) w.r.t. p, and setting it to 0, yields:  
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Solving for p gives us:  )1(11       )1(
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b.   We have: 4
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9.    

a.   Using Maximum Likelihood Estimators, we obtain the following parameters for the 
conditional distributions of X1, X2, and X3: 

 
P(X1 | Y = 0) ~ Uni(0.1, 0.7) 
P(X2 | Y = 0) ~ Uni(0.4. 0.8) 
P(X3 | Y = 0) ~ Uni(0.1, 0.6) 
 
P(X1 | Y = 1) ~ Uni(0.5, 0.9) 
P(X2 | Y = 1) ~ Uni(0.2, 0.7) 
P(X3 | Y = 1) ~ Uni(0.4, 0.8) 

 
 
b.   We want to compute P(Y = 0 | test instance i) / P(Y = 1 | test instance i), and if this is 

greater than 1, we predict Y = 0 and otherwise we predict Y = 1. 
 
Note that:  P(Y = 0 | test instance i) / P(Y = 1 | test instance i)  
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= P(X | Y = 0) P(Y = 0) / P(X | Y = 1) P(Y = 1) 
 

Using the Naive Bayes assumption, we have:  
P(X | Y = 0) P(Y = 0) / P(X | Y = 1) P(Y = 1)  
= P(X1 | Y=0) P(X2 | Y=0) P(X3 | Y=0) P(Y=0) / P(X1 | Y=1) P(X2 | Y=1) P(X3 | Y=1) P(Y=1) 
 
Here are the predictions for Y we make for each of the test instances: 
 
P(Y = 0 | test instance 1)/P(Y = 1 | test instance 1) 
= (1/0.6)(1/0.4)(1/0.5)(4/8)/(1/0.4)(1/0.5)(1/0.4)(4/8) = (5/3)(5/2)(2)/(5/2)(2)(5/2) = 2/3 
 

Since this is < 1, we classify test instance 1 as class Y = 1 
 
 
P(Y = 0 | test instance 2)/P(Y = 1 | test instance 2) 

= (1/0.6)(1/0.4)(0)(4/8)/(1/0.4)(1/0.5)(1/0.4)(4/8) = (0)/(5/2)(2)(5/2) = 0 
 

Since this is < 1, we classify test instance 2 as class Y = 1 
 
 
P(Y = 0 | test instance 3)/P(Y = 1 | test instance 3) 

= (1/0.6)(1/0.4)(1/0.5)(4/8)/(1/0.4)(1/0.5)(0)(4/8) = (5/3)(5/2)(2)/(0) = ∞ 
 

Since this is > 1, we classify test instance 3 as class Y = 0 
 
 


